Explanation:
In cylindrical coordinates (x = rcosθ, y = rsinθ):
\[
\text{Volume} = \int_0^π \int_0^{2sinθ} \int_{r^2}^{2rsinθ} r\,dz\,dr\,dθ
\]
First integrate with respect to z:
\[
\int_{r^2}^{2rsinθ} dz = 2rsinθ - r^2
\]
Then integrate with respect to r:
\[
\int_0^{2sinθ} r(2rsinθ - r^2)\,dr = \left[\frac{2r^3sinθ}{3} - \frac{r^4}{4}\right]_0^{2sinθ} = \frac{4sin^4θ}{3}
\]
Finally integrate with respect to θ:
\[
\int_0^π \frac{4sin^4θ}{3}\,dθ = \frac{4}{3} \cdot \frac{3π}{8} = \frac{π}{2}
\]